

LA-UR-21-27984

Approved for public release; distribution is unlimited.

Title: Multigroup Scattering in Monte Carlo Radiation Transport Codes

Author(s): Singh, Luquant

Nelluvelil, Eappen Sebastian Burke, Timothy Patrick Trahan, Travis John

Intended for: Report

Issued: 2021-08-10

Multigroup Scattering in Monte Carlo Radiation Transport Codes

Students: Eappen Nelluvelil and Luquant Singh Mentors: Timothy Burke and Travis Trahan

XCP Computational Physics Student Summer Workshop Final Presentations August 10-12, 2021

Luquant Singh

- 2nd year electrical engineering PhD student at UW-Madison
 - Member of Helically Symmetric Experiment plasma lab studying turbulence in fusion plasmas
 - Broadly interested in HPC, fluid dynamics, astrophysics
- Undergraduate degree in applied math and physics, also at UW
 - clarinet performance

Eappen Nelluvelil

- Majored in computational and applied mathematics at Rice University
- Incoming 1st year applied mathematics
 PhD student at CU Boulder
 - Broadly interested in numerical linear algebra, numerical methods for PDEs, and high-performance computing

Evolution of a neutron population in the presence of material is governed by the neutron transport equation.

 When a neutron is incident on a material nucleus, three neutron events are most common:

[1] capture [2] scatter [3] fission

- likelihood of an event proportional to corresponding nuclear cross section
- The neutron transport equation is a conservation law for neutron flux that depends on nuclear cross sections for capture, scattering, and fission

Reproduced from Larsen, NERS 543 Lecture notes, Univ. of Michigan (2012)

Neutron scattering is described by an angular probability distribution function.

- In a scattering event, a neutron scatters an angle θ into an outgoing trajectory
- Every nuclear isotope has a unique scattering distribution derived from nuclear scattering cross section
 - represented in terms of scattering cosine μ
 - azimuthal symmetry → distribution functions depend only on scattering cosine

¹Reproduced from Fratus, PHYS 103 Lecture notes, Univ. of California (2015)

Several codes at LANL can determine approximate solutions to the neutron transport equation.

- Deterministic codes discretize in energy, angle, and time to obtain solutions
 - multigroup approximation is widely used for efficient calculations
 - each group-to-group transfer has a scattering distribution
- Monte Carlo codes determine transport quantities by sampling probability distributions
 - large number of neutrons are evolved using random numbers

Adapted from Larsen, NERS 543 Lecture notes, Univ. of Michigan (2012)

Multigroup codes represent scattering distributions in terms of Legendre polynomials.

- Legendre polynomials are used to represent scattering PDFs because:
 - domain [-1,1] is same as scattering cosine range
 - efficient to only use low-order truncations of scattering distribution
- Important: low-order truncations of scattering distributions may be nonpositive over [-1,1]
 - not suitable for Monte Carlo sampling!

$$f_{g' \leftarrow g} (\mu) = \sum_{\ell=0}^{L} \frac{2\ell+1}{2} f_{\ell,g' \leftarrow g} P_{\ell} (\mu)$$

Moments of a scattering PDF describe angular anisotropy of scattering.

- We seek a non-negative PDF that captures the anisotropy of the truncated multigroup PDF
 - to capture PDF shape, we can compute moments of the distribution function
 - moments can be computed directly from Legendre coefficients
- Higher order moments capture higher order anisotropy

$$f_0 = 1.0$$
 $\mathcal{M}_0 = 1.0$ $f_1 = 0.3$ \Rightarrow $\mathcal{M}_1 = 0.3$ $\mathcal{M}_2 = 0.2$ $f_3 = -0.2$ $\mathcal{M}_3 = 0.1$

Using a discrete angle method, particles scatter into only a limited number of outgoing angles.

$$f(\mu) = \sum_{k=1}^{K} \omega_k \delta(\mu - \mu_k)$$

 Discrete angle technique (DAT) involves deriving a weighted delta function PDF

- Pros:

- fast sampling
- for high-order truncations, anisotropy is well-represented

- Cons:

 low-order truncations may suffer from limited angle selection (ray effects)

For low-order truncations, a semicontinuous scattering distribution may best represent angular anisotropy.

 The semicontinuous (SC) method involves deriving a PDF that is a weighted sum of a continuous density and a delta function density

- Pros:

- weighting β of continuous and discrete densities can be specified
- may mitigate low-order ray effects possible with DAT

- Cons:

- less efficient sampling
- difficult to generalize

$$f(\mu) = \beta f^*(\mu) + (1 - \beta) \left(\sum_{k=1}^{K} \tilde{\omega_k} \delta(\mu - \tilde{\mu_k}) \right)$$

SC and DAT methods have been implemented in the GPU-enabled neutron transport code MGMC.

- Previously, MGMC used only isotropic
 P₀ sampling
 - only a good approximation in limited scenarios
- We implemented SC and DAT sampling for P₁ and P₃ PDFs
 - better captures anisotropic neutron scattering mechanics
 - can efficiently sample these PDFs on CPUs and GPUs

MGMC SC and DAT methods have been verified against other LANL codes using *k*-eigenvalue simulations.

- *k*-eigenvalue is a measure of criticality in a system
 - -k=1 critical
 - -k < 1 subcritical
 - -k > 1 supercritical
- To verify the SC and DAT methods in MGMC, k was computed for three critical ICSBEP benchmarks
 - results are compared with reference multigroup answers from deterministic code PARTISN

Benchmarks:

- IEU-MET-FAST-007 (BIGTEN)
- U233-SOL-THERM-008
- PU-MET-FAST-006 (FLATTOP)

Simulation parameters:

- 30 groups
- $S_N = 128$
- Particles/batch = 2²⁰, 400 batches

MGMC SC and DAT methods have been verified against other LANL codes using *k*-eigenvalue simulations.

PU-MET-FAST-006 (FLATTOP)

 1.8in diameter ²³⁹Pu metal alloy surrounded by 3.6in diameter
 Ni-coated U reflector **IEU-MET-FAST-007 (BIGTEN)**

- Big: 10 metric tons of mixed Uranium, 6in thick depleted Uranium reflector; 40in axial length, 33in diameter
- Ten: 10% average ²³⁵U enrichment in cylindrical core

U233-SOL-THERM-008

 48in diameter unreflected Aluminum sphere of ²³³U Nitrate solution

SIZE

MGMC can replicate deterministic multigroup criticality calculations to within statistical significance.

U233-SOL-THERM-008

$\overline{P_N}$	$k_{ m eff}$ PARTISN	$k_{\rm eff}$ DAT	$\Delta k_{\mathrm{eff}}(\sigma)$	$k_{\rm eff}$ SC	$\Delta k_{ m eff}(\sigma)$
P_0	1.02819	$1.02819\pm~5\mathrm{pcm}$	0.1	$1.02819 \pm 5 \mathrm{pcm}$	0.1
P_1	0.99486	$0.99493 \pm 5 \text{pcm}$	1.2	$0.99504 \pm 5 \mathrm{pcm}$	3.7
P_3	0.99503	$0.99509 \pm 5 \mathrm{pcm}$	1.2	$0.99504 \pm 5 \mathrm{pcm}$	0.1

- U233-SOL-THERM-008 simulations showed the best agreement between **PARTISN** and **MGMC**, likely due to large dimensions
 - discrepancies between PARTISN and MGMC decrease as truncation order increases for anisotropic scattering
 - we do not expect exact agreement between the two codes because higher order moments of low-order truncations are different

MGMC agrees well with PARTISN; anisotropic scattering agreement improves with increasing scattering order.

U233-SOL-THERM-008

$\overline{P_N}$	$k_{ m eff}$ PARTISN	$k_{\rm eff}$ DAT	$\Delta k_{\mathrm{eff}}(\sigma)$	$k_{\rm eff}$ SC	$\Delta k_{\mathrm{eff}}(\sigma)$
P_0	1.02819	$1.02819 \pm \; 5\mathrm{pcm}$	0.1	$1.02819 \pm 5 \mathrm{pcm}$	0.1
P_1	0.99486	$0.99493 \pm 5 \mathrm{pcm}$	1.2	$0.99504 \pm 5 \mathrm{pcm}$	3.7
P_3	0.99503	$0.99509 \pm 5 \mathrm{pcm}$	1.2	$0.99504 \pm 5 \mathrm{pcm}$	0.1

IEU-MET-FAST-007

$\overline{P_N}$	$k_{ m eff}$ PARTISN	$k_{\rm eff}$ DAT	$\Delta k_{\mathrm{eff}}(\sigma)$	$k_{\rm eff}$ SC	$\Delta k_{\mathrm{eff}}(\sigma)$
P_0	1.04471	$1.04466 \pm 4 \mathrm{pcm}$	1.3	$1.04466 \pm 4 \mathrm{pcm}$	1.3
P_1	0.99283	$0.99216 \pm 4 \mathrm{pcm}$	16.8	$0.99312 \pm 4 \mathrm{pcm}$	7.7
P_3	0.99357	$0.99348 \pm 4 \mathrm{pcm}$	2.1	$0.99331 \pm 4 \mathrm{pcm}$	6.3

PU-MET-FAST-006

$\overline{P_N}$	$k_{ m eff}$ PARTISN	$k_{\rm eff}$ DAT	$\Delta k_{ ext{eff}}(\sigma)$	$k_{\rm eff}$ SC	$\Delta k_{\mathrm{eff}}(\sigma)$
$\overline{P_0}$	1.14654	$1.14652 \pm 5 \mathrm{pcm}$	0.3	$1.14652 \pm 5 \mathrm{pcm}$	0.3
P_1	0.97238	$0.96734 \pm 4 \mathrm{pcm}$	111.9	$0.99157 \pm 4 \mathrm{pcm}$	436.0
P_3	0.99493	$0.99468 \pm 4 \mathrm{pcm}$	5.8	$0.99716 \pm 5 \mathrm{pcm}$	47.3

- PARTISN P₀ is a metric for the importance of scattering anisotropy
- We expect MGMC and PARTISN P₀
 values to agree because they use
 the same scattering PDFs
- As the importance of anisotropy increases, PARTISN and MGMC show more disagreement for P₁ and P₃ simulations

Speedups of 15-25x have been demonstrated with the SC method on NVIDIA V100 GPUs.

- To assess performance, particle simulation rate can be used.
 - computed this rate for 2¹⁶ 2²⁹
 neutrons per batch, 30 groups, P₃
 SC sampling
 - tested on Sierra clone node
 - 2 Power9 CPUs, 4 NVIDIA V100 GPUs
- Additional simulations show that SC P₃ is only about 10% slower than P₀ sampling on GPUs, independent of number of groups used.

Parallelization on Sierra clone node

CPU: 4 MPI Processes, 40 OpenMP Threads/Proc

GPU: 4 MPI Processes, 1 NVIDIA Volta GPU/Proc

Conclusions

- Our problem: Legendre truncations to multigroup scattering distributions are not amenable to Monte Carlo sampling due to negative values.
- Our work: We have implemented two moment-preserving methods in MGMC that
 - capture the shape of the truncation;
 - are non-negative over [-1, 1]; and
 - can be efficiently sampled on CPUs and GPUs

Our results:

- MGMC can now simulate neutrons with anisotropic scattering mechanics
- MGMC shows good agreement with LANL production codes PARTISN

Future Work

Sampling methods

- Entropy-maximizing method
- 5th order semi-continuous PDFs

Future verification

- Verifying MGMC's results over more complex critical benchmarks
- Comparing MGMC simulations with additional neutron transport codes

Performance

- Profiling MGMC's performance on GPUs
- Testing performance on A100s
- Experimenting with additional parallelization strategies

Thank you for listening!

